•   院士
  •   正高级
  •   副高级
  •   人才计划
  •   博士后流动站
  • 研究员
    姓名: 朱春梧 性别:
    职务: 中心主任 职称: 研究员
    通讯地址: 南京市北京东路71号
    邮政编码: 210008 电子邮箱: cwzhu@issas.ac.cn
    简 历:

      朱春梧,男,江西九江人,博士,博士生导师,土壤与农业可持续发展国家重点实验室-研究员,科技部-“青年973”首席科学家(全球变化领域评比-结题优秀),中科院“卢嘉锡青年人才”,中科院青年创新促进会成员(优秀会员),南京土壤研究所“海外优秀青年人才”,碳中和土壤技术研发中心主任,土壤利用与环境变化研究中心主任,土壤生物与生态学部副部长,日本学术振兴会(JSPS)特别研究员,美国Smithsonian访问学者。

    主要运用FACE(free air carbon dioxide enrichment)、OTC及大型气候箱为研究平台,从事农田和湿地生态系统对全球变化(主要涉及CO2升高、温升、海平面升高)的响应及适应研究,着重关注全球变化下粮食安全(产量与品质)、物种变迁、土壤固碳减排,土壤健康等领域。与哈佛大学、哥伦比亚大学、华盛顿大学以及全球主要作物FACE(日本、美国、德国和澳大利亚)、美国USDA和Smithsonian等机构建立了较密切的合作关系。在Science Advances (IF=12.8), GCB-Bioenergy, New Phytologist, Soil Biology and Biochemistry, J Exp Bot, Clim Change, Eur J Agron, Field Crop Res 等期刊发表论文40多篇。Front Plant Sci副主编,《土壤》、《生态学杂志》和《土壤与作物》编委,Lancet Planetary Health, Global Change Biol, Clim Chang, Rice, Field Crop Res, Eur J Agron, Plant soil等国际著名刊物同行审评专家。研究成果被国际200多家媒体追踪报道。

       
      可推荐优秀学生去国外顶尖大学及研究机构留学、联合培养或博士后工作。
       
      学习经历:

      1999年9月-2003年7月,南京农业大学,获学士学位

      2003年9月-2006年7月,南京土壤研究所,获硕士学位

      2006年9月-2009年7月,南京土壤研究所,获博士学位

    工作经历:

      2009年7月- 2011年6月, 日本JSPS特别研究员

      2011年7月- 2012年3月,日本国立农业环境研究所,博士后

      2012年9月- 2017年8月, 南京土壤研究所副研究员

      2016年6月-2017年5月,美国Smithsonian Environment Research Center访学

      2017年8月-至今,南京土壤研究所研究员

    研究领域:

    全球变化下农田和湿地生态系统的响应与适应,及其区域和全球尺度模拟预测。

    社会任职:

    获奖及荣誉:

    代表论著:

          1. Chunwu Zhu et al. (2018). Carbon dioxide (CO2) levels this century will alter the protein,micronutrients, and vitamin content of rice grainswith potential health consequences for thepoorest rice-dependent countries. Science Advances. 4(eaaq1012):1-8.

    2. Hu, Z., CW Zhu., Chen, X., Bonkowski, M., Griffiths, B., & Chen, F., et al. (2017). Responses of rice paddy micro-food webs to elevated CO2, are modulated by nitrogen fertilization and crop cultivars. Soil Biology & Biochemistry, 114,104-113. CW Zhu* et al. (2016) Elevated atmospheric CO2 stimulates sugar accumulation and cellulose degradation rates of rice straw. Global Change Biology Bioenergy, 8(3):579–587.

    3. CW Zhu et al. (2016) Effect of elevated CO2 on the growth and macronutrient uptake of artemisia annua L. Pedosphere, 26 (2): 235-242.

    4. Cheng Y,Zhang J,Zhu JG,Liu G,CW Zhu*,Wang SQ*. (2016) Ten years of elevated atmospheric CO2 doesn't alter soil nitrogen availability in rice paddy. Soil Biology and Biochemistry, 98:99-108.

    5. Jing, P., Wang, D., CW Zhu, & Chen, J. (2016). Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types. Frontiers in Plant Science, 7(e56482).

    6. Liu Qi, Liu Benjuan, Ambus Per, Zhang Yanhui, Hansen Veronika, Lin Zhibin, Shen Dachun, Liu Gang, Bei Qicheng, Zhu Jianguo, Wang Xiaojie, Ma Jing, Lin Xingwu, Yu Yongchang, CW Zhu, Xie Zubin. (2016). Carbon footprint of rice production under biochar amendment - a case study in a chinese rice cropping system. Global Change Biology Bioenergy, 8(1), 148-159.

    7. C Chen, Q Jiang, LH. Ziska, JG Zhu,G Liu,J Zhanga, K Ni, S Seneweera, CW Zhu*. (2015) Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide. Field Crops Research, 178: 63–68. IF =3.8

    8. CW Zhu et al. (2015) An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Scientific Reports, doi:10.1038/srep12719.

    9. CW Zhu et al. (2015) Historical and experimental evidence for enhanced concentration of artemesinin, a global anti-malarial treatment, with recent and projected increases in atmospheric carbon dioxide. Climatic Change, 132 (2), 295-306.

    10. CW Zhu*, Xu X, Wang D, Zhu J et al. (2015) Elevated atmospheric CO2 stimulates sugar accumulation and cellulose degradation rates of rice straw. Global Change Biology Bioenergy, doi: 10.1111/gcbb.12277

    11. CW Zhu*, Xu X, Wang D, Zhu J et al. (2015) An indica rice genotype showed the similar enhancement of yield with hybrid rice under free air carbon dioxide enrichment. Scientific Reports, 5, 12719.

    12. G Ren,CW Zhu et al.(2015). Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and soil, 392 (1-2): 27-44.

    13. Zhang, G., Sakai, H., Usui, Y., Tokida, T., Nakamura, H., & CW Zhu., et al. (2015). Grain growth of different rice cultivars under elevated CO2, concentrations affects yield and quality. Field Crops Research, 179, 72-80.

    14. CW Zhu et al. (2014) Biochemical and molecular characteristics of leaf photosynthesis andrelative seed yield of two contrasting rice cultivars in response to elevated CO2.Journal ofExperimental Botany, 65 (20): 6049-6056.

    15. CW Zhu et al. (2013) Effects of elevated CO2 on lodging of stem and root within various genotypic rice. Science Bulletin, 58(1): 1-8.

    16. CW Zhu et al. (2013) Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars. European Journal of Agronomy, 4620–24.

    17. CW Zhu, Cheng, W. G., Sakai, H., Oikawa, S., Laza, R. C., & Usui, Y., et al. (2013) Effects of elevated CO2 on stem and root lodging among rice cultivars. Chinese Science Bulletin, 58(15), 1787-1794.

    18. Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., CW Zhu., & Usui, Y., et al. (2013). Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in japan. Functional Plant Biology, 40(2), 148-159.

    19. Zhang, G., Hidemitsu, S., Takeshi, T., Yasuhiro, U., CW Zhu, & Hirofumi, N., et al. (2013). The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza Satival.). Journal of Experimental Botany, 64(11), 3179-3188.

    20. CW Zhu et al. (2012) The temporal and species dynamics of photosynthetic acclimation in ?ag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide. Physiologia Plantarum, 145(3): 395-405.

    21. Lewis H. Ziska, James A. Bunce, Hiroyuki Shimono, David R. Gealy, Jeffrey T. Baker, Paul C. D .,Newton, Matthew P. Reynolds, Krishna S. V. Jagadish, CW Zhu, Mark Howden and Lloyd T. Wilson Ziska, L. H., Bunce, J. A., Shimono, H., Gealy, D. R., Baker, J. T., & Newton, P. C. D., et al. (2012). Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proceedings Biological Sciences, 279(1745), 4097-4105.

    22. Zeng, Q., Liu, B., Ben, G., Zhang, Y., CW Zhu, & Ma, H., et al. (2011). Elevated co? effects on nutrient competition between a C3 crop (oryza sativa l.) and a C4 weed (echinochloa crusgalli l.). Nutrient Cycling in Agroecosystems, 89(1), 93-104.

    23. Liang, J., Zeng, Q., Zhu, J. G., CW Zhu, Cao, J. L., & Xie, Z. B., et al. (2010). Effects of O3-FACE(ozone-free air control enrichment) on gas exchange and chlorophyll fluorescence of rice leaf. Spectroscopy and Spectral Analysis, 30(4), 991-995.

    24. CW Zhu et al. (2009) Elevated CO2 accelerates ?ag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation. Functional Plant Biology, 36, 291–299.

    25. Cao, J. L., Zhu, J. G., Ma, H. L.,CW Zhu, Yan, J., & Zeng, Q., et al. (2009). Effect of free air CO2 enrichment (FACE) on phenolic acid metabolism in winter wheat leaf under different nitrogen levels. Chinese Journal of Eco-Agriculture, 17(5):837-841

    26. CW Zhu et al. (2008) Elevated CO2 concentration enhances the role of the ear to the flag leaf in determining grain yield of wheat. Photosynthetica, 46 (2): 318-320.

    27. CW Zhu et al. (2008) Impact of nitrogen supply on carbon dioxide induced changes in competition between rice (a C3 crop) and Echinochloa crus-galli (a C4 weed). Weed Science, 2008 56:66–71.

    承担科研项目情况:

    主持项目:
    1. 科技部青年973项目及江苏省科技厅配套项目
    2. 中科院基础前沿科学研究计划从0到1原始创新项目
    3. 国家自然基金3项
    4. 中科院青促会项目及优秀会员项目
    5. 江苏省科技厅基金2项(重点、青年)
    6. 中科院南京土壤所一三五计划重点项目
    7. 国家重点实验室优秀青年人才项目
    等。。。